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Commentary

Introduction

Precision medicine is a modern concept used since 2011 to 
describe medical treatments tailored to the specific charac-
teristics of each patient.1,2 In this model of care, standard his-
tory, physical exam, and laboratory tests are enhanced with 
“omics”3 to identify unique characteristics of the patient and 
their disease that guide clinical management decisions. The 
patient’s response is then monitored with a range of conven-
tional and omic data to confirm to modify initial manage-
ment decisions. The combination of traditional gross and 
microscopic metrics combined with molecular profiling 
across multiple biological axes enables precision medicine.4 
One promise of precision medicine is to identify patients 
who will benefit or not benefit from a particular treatment 
based on genetic and other factors.5

Recent cancer prevention, early detection, and treatment 
innovations are incorporating data about patient-specific 
clinical features along with genomic-based diagnostics and 
targeted therapeutics.6 This approach allows a more accu-
rate characterization of at-risk individuals. These efforts at 
preventing diagnosing and treating cancer are emphasizing 
the incorporation of cancer phenotype and omic data, which 
can be combined with environmental factors to indicate a 
patient’s risk of cancer.7 One distinctive feature in cancer 

diagnostics is that genomic information is obtained from 
readily accessible tumor tissue.

Diabetes is a collection of disorders that share the com-
mon end result of hyperglycemia. Diabetes can be classified 
into the following general categories: (1) type 1 diabetes, due 
to autoimmune β-cell destruction, usually leading to absolute 
insulin deficiency; (2) type 2 diabetes, due to a progressive 
loss of β-cell insulin secretion frequently on the background 
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of insulin resistance; (3) gestational diabetes mellitus, diabe-
tes first evident during pregnancy; (4) monogenic diabetes, 
caused by mutations in single genes, such as neonatal diabe-
tes and maturity-onset diabetes of the young (MODY); and 
(5) secondary diabetes due to other causes, such as diseases 
of the exocrine pancreas or drugs like glucocorticoids.8 
These distinguishing factors include (1) the age of onset, (2) 
the severity of loss of islet cell function, (3) the degree of 
insulin resistance, (4) the presence of diabetes-associated 
antibodies, and (5) the presence of severe mutations that alter 
protein function.9

Phenotype Identification of Diabetes

Traditionally phenotypic characteristics have been used to 
determine an individual’s form of diabetes according to the 
above classification. Such characteristics are age of onset, 
body habitus, dependency on insulin, and history of ketoaci-
dosis. The phenotype approach is not sufficient to distinguish 
all cases of type 1 diabetes from those with type 2 diabetes, 
because patients in both categories can have either extreme 
of these phenotype dyads. For example, people with autoim-
mune diabetes can also become obese, and people with type 
2 diabetes can present in ketoacidosis.

The purpose of applying the precision medicine approach 
to diabetes is to further characterize an individual’s condition 
beyond clinical phenotypes by the use of laboratory tests 
(including genetic, immune, and metabolic markers) and 
other information, not only to guide therapeutic decision-
making but also to predict disease progression and clinical 
outcomes under various scenarios.

Examples of Applying Precision 
Medicine to Diabetes

The identification of single-gene mutations that cause diabe-
tes with high penetrance (monogenic diabetes) provides a 
simple and accurate way to make precise diagnosis of diabe-
tes subtypes and to use that information to guide therapy. For 
example, people who carry heterozygous mutations in the 
HNF1A or HNF4A, which encode β-cell nuclear transcrip-
tion factors and represent two or more than a dozen genes 
known to cause MODY diabetes when mutated, are very sen-
sitive to low-dose sulfonylurea therapy. In contrast, some 
people with activating mutations in KIR6.2 or ABCC8, which 
encode components of the ATP-sensitive potassium channel 
in the β-cell and often present as neonatal diabetes, can still 
respond to very high-dose sulfonyl urea therapy and get off 
insulin with improved glucose management.10

Common forms of type 1 and type 2 diabetes also have a 
heritable component, but their genetic architecture is polygenic, 
ie, composed of many genetic polymorphisms which in combi-
nation with environmental factors give rise to the phenotype. 
Many polymorphisms related to T lymphocyte function have 
been identified as contributors to type 1 diabetes, and many 

polymorphisms related to β-cell function have been associated 
with type 2 diabetes. The effect sizes of genes associated with 
type 2 diabetes are very small compared to the effects seen in 
monogenic diabetes. However, most people with monogenic 
diabetes are initially diagnosed with type 1 or 2 diabetes, and we 
continue to identify new genetic causes of monogenic diabetes, 
so it remains an important goal of precision medicine in diabetes 
to distinguish monogenic diabetes from type 1 and type 2 diabe-
tes and determine best management practices based on the spe-
cific mutations that patients carry.

Hyperglycemia can cause epigenetic changes in vascular 
cells leading to protein-protein interactions followed by car-
diovascular complications aberrant DNA methylation, 
imbalance of histone modifications, and a differential expres-
sion of some micro-RNAs, which have all been proposed as 
potentially useful prognostic biomarkers for the develop-
ment of atherosclerosis in diabetes patients.11

Cluster Analysis of Six Phenotypic 
Variables to Achieve Stratification

Stratification of patients with diabetes for prediction of 
response to treatments has been attempted with pheno-
typic classification alone and no genotyping. In 2018, 
Ahlqvist et al reported a cluster analysis of patients newly 
diagnosed with diabetes who were participants in five 
research cohorts in Scandinavia.12 They analyzed the 
patients according to six phenotypic variables that could 
be measured at diagnosis. These variables at onset of dia-
betes included (1) body mass index, BMI; (2) age; (3) 
hemoglobin A1c concentration; (4) a homeostasis model 
assessment estimate of β-cell function, (5) a homeostasis 
model assessment estimate of insulin resistance, and (6) 
the presence or absence of glutamic acid decarboxylase 
antibodies. They identified five clusters of patients with 
very different characteristics and risks of diabetic compli-
cations. They labeled the clusters as severe autoimmune 
diabetes, severe insulin-deficient diabetes (SIDD), severe 
insulin-resistant diabetes (SIRD), mild obesity-related 
diabetes, and mild age-related diabetes (MARD) (see 
Table 1). A targeted genetic analysis of the cohorts dem-
onstrated distinct genetic features for some of the clusters, 
indicating different pathophysiological processes.

Therefore, this six-phenotypic stratification into five sub-
groups with differing disease progressions was felt to offer 
promise in targeting treatments toward patients, according to 
their risks of developing complications.

A later study by Zaharia et al in 2019 divided a set of 
newly diagnosed type 1 or type 2 diabetes patients into the 
same five clusters that Ahlqvist identified. The five diabetes 
clusters showed different prevalence of nonalcoholic fatty 
liver disease (highest in the SIRD cluster) and diabetic neu-
ropathy (highest in the SIDD cluster) at early stages of the 
disease and hepatic fibrosis (highest in the SIRD cluster) at 
later stages.13
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This year Dennis et al developed a model to stratify par-
ticipants in two large clinical trials of type 2 diabetes accord-
ing to the five clusters of Ahlqvist et al to a set of four simple 
clinical features, so as to compare clinical outcomes.14 These 
features were (at the onset of diabetes) gender, age, BMI, and 
hemoglobin A1c. They found that stratifying patients into 
subgroups per the Ahlqvist method and then treating accord-
ing to the likeliest beneficial drug for each subgroup was less 
effective at predicting favorable outcomes in progression of 
disease and its complications than simply stratifying patients 
according to a quantitative distribution of their specific sim-
ple clinical features. They concluded that various phenotypic 
stratification approaches to applying precision medicine 
offer an opportunity to improve outcomes in type 2 diabetes, 
but combining phenotypic measures is likely to be more 
effective than assignment to dichotomous subgroups. This 
result by Dennis underscores a major limitation of retrospec-
tive analyses. They suggest hypotheses for testing therapies 
on various subgroups defined by phenotypic and genetic fea-
tures, but they do not explain whether different treatments of 
the subgroups result in true benefits.

Pharmacogenetics

Pharmacogenetics is the study of how genetic variation 
affects (1) the pharmacokinetic and pharmacodynamic 
response to a drug, (2) polymorphisms in drug targets that 
can affect therapeutic outcomes, and (3) the incidence of 
adverse events.15,16 For diabetes drugs, genetic variation can 
pertain to the glycemic response, side effects, risk reduction 
for cardiovascular effects, and reduction in progression of 
microvascular disease. Pharmacogenetics focuses on identi-
fying which patients are most likely to benefit from a drug or 
which are most likely to avoid side effects. Genetic discov-
ery predictive of drug response can focus on two approaches: 
The first approach is through understanding the natural his-
tory of the cause of the diabetes and how one set of patients 
is pathophysiologically different from another set of patients 
in their disease and in their cause of diabetes, so that a drug 
can be selected that will be most effective for that subgroup’s 

pathophysiology. The second approach is to identify geno-
types or other markers associated with altered drug transport 
or drug metabolism (both of which affect drug exposure and 
efficacy) so that patients with genotypes associated with 
altered drug outcomes can receive drugs most likely to be 
effective and/or safe.5

Using the first approach, in 2018, Udler et al reported a 
cluster analysis of 14,183 subjects with 94 T2D genetic vari-
ants and 47 diabetes-related metabolic traits from publicly 
available genome-wide association study (GWAS) datasets 
and biobanks.17 They identified five robust clusters of type 2 
diabetes variants, which appear to represent biologically 
meaningful and distinct mechanistic pathways (see Table 2). 
Two clusters related to pancreatic β-cell function and three 
clusters related to pathways of insulin resistance. They found 

Table 1. Five Clusters of Diabetes According to Ahlqvist et al.12

Number Abbreviation Name Clinical features

Cluster 1 SAID Severe autoimmune diabetes Early onset, low BMI, poor metabolic control, and positive for the 
presence of GAD autoantibodies. Fastest time to sustained insulin use

Cluster 2 SIDD Severe insulin-deficient diabetes Early onset, low BMI, poor metabolic control, and negative for the 
presence of GAD autoantibodies. Highest risk of retinopathy. Likeliest 
to be treated with metformin

Cluster 3 SIRD Severe insulin-resistant diabetes Insulin resistance and high BMI. Highest risk of nonalcoholic fatty liver 
disease and high risk of chronic diabetic kidney disease

Cluster 4 MOD Mild obesity related diabetes Obesity but no insulin resistance
Cluster 5 MARD Mild age-related diabetes Old age and with obesity but no insulin resistance

Abbreviations: BMI, body mass index; GAD, glutamic decarboxylase.

Table 2. Five Clusters of Diabetes According to Udler et al.17

Number Name Clinical features

Cluster 1 β-cell cluster Increased PI levels, decreased 
Ins levels, and increased risk 
of CAD and ischemic stroke 
(including large and small 
vessel but not cardioembolic)

Cluster 2 Proinsulin cluster β-cell dysfunction with 
decreased PI levels and 
decreased Ins levels, with no 
associated clinical features

Cluster 3 Obesity cluster Obesity-mediated insulin 
resistance with no associated 
clinical features

Cluster 4 Lipodystrophy 
cluster

Lipodystrophy-mediated insulin 
resistance, increased risk 
of CAD, increased BP, and 
increased UACR

Cluster 5 Liver/lipid cluster Abnormal liver metabolism-
mediated insulin resistance, 
decreased creatinine clearance, 
and decreased UACR

Abbreviations: BP, blood pressure; CAD, coronary artery disease; Ins, 
insulin; PI, proinsulin; UACR, urine albumin-creatinine ratio.
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that approximately 30% of the overall population had a 
genetic burden that placed them at the top 10% of one of 
these clusters. The investigators stated that the next step in 
this analysis would be to examine whether these individuals 
who fit squarely into one of the clusters would respond dif-
ferentially to medications affecting the disrupted pathway, 
and whether they would demonstrate a differential rate of 
disease progression and development of complications. 
These clusters were largely consistent with those reported by 
Mahajan et al in an independent exercise.18

In regard to the second approach, to date, most of the genes 
associated with increased risk of diabetes have had little asso-
ciation with differential responses to various drugs. Most of 
the work in identifying variable responses to a diabetes drug 
have centered on metformin uptake and tolerance19; however, 
a small number of genes with cardioprotective properties in 
the presence of glucagon-peptide 1 receptor agonists20 and sul-
fonylureas21 have been identified.

Current State of Pharmacogenetics

A literature review published last year for pharmacokinetic 
variants related to four drug classes for type 2 diabetes 
(metformin, sulfonylurea/glinides, thiazolidinediones, and 
glucagon-like peptide-1 receptor agonists/dipeptylpepti-
dase 4 inhibitors) identified 64 genes and 200 variants.15 In 
a cohort of Swedish adults, the predictive accuracy for life-
style risk factors was found to be similar to that yielded by 
genetic information for incident type 2 diabetes. In general, 
genetic studies have not been shown to predict disease pro-
gression or predict a significant difference in response to a 
pharmacologic treatment.15,22 It should be noted that while 
most pharmacogenetic studies for type 2 diabetes have 
focused on a single gene, joint contributions of multiple 
loci on the efficacy of various combinations of drugs for 
type 2 diabetes have recently also been identified.23

Current State of Precision Medicine

Patients with diabetes may be able to benefit from classifica-
tion according to the cause of diabetes, pathophysiology, and 
natural history, so that optimal treatments can then be selected. 
The most widely used factors for classification (the age of 
onset, the severity of loss of islet cell function, the degree of 
insulin resistance, the presence of diabetes–associated anti-
bodies, or the presence of specific mutations)9 are intended to 
assign patients to one of the five types of diabetes described 
above. However, a patient can be mistakenly classified 
because the diagnostic criteria for the five broad types of dia-
betes encompass many subtypes that do not exactly fit the 
main defining criteria or else patients who do fit the defining 
criteria might still represent very different subtypes.

Information to classify types of diabetes is now widely 
available to supplement these five traditional classifying fac-
tors from various sources: (1) patient surveys of the natural 

history of the disease (including family history, ethnicity, 
mental health, medications, and lifestyle)24; (2) anthropo-
morphic measurements of body characteristics (sometimes 
based on paper tools based or more efficiently on digital 
tools); (3) measurements of circulating or urinary molecules 
or cells, which can include traditional lab tests or biomark-
ers, including information about continuous glucose concen-
trations25]; and (4) behavioral measurements of activities 
such as food intake26 and exercise that are accessible from 
sensors.27 Phenotypic and biomarker information are two tra-
ditional dimensions of classifying patients, but the premise 
of precision medicine is that more valuable characterization 
is possible by incorporating additional types of assessments 
that query relevant biological axes comprehensively. These 
domains, which can interact with the environment, include: 
inherited variation (genomics); the features that determine 
whether a gene is active or suppressed in a given tissue (epig-
enomics); levels of gene expression (transcriptomics); the 
proteins that arise from specific gene products (proteomics); 
small molecules generated by enzymatic reactions (metabo-
lomics); or the set of microbial species that coexist with the 
human organism (the metagenome)28,29 (see Figure 1). Omics 
testing uses a variety of advanced lab analytical methods to 
determine the presence of genetic markers or circulating 
molecules whose presence and concentrations (1) are related 
to gene expression and environmental factors and (2) can 
predict clinical outcomes.30

The reason why patients of similar phenotype respond dif-
ferently to the same treatment is likely related to the interplay 
of multiple genotypes and other factors. To date, the common 
variants shown by GWAS to be associated with the develop-
ment of type 2 diabetes have had only modest effect sizes. 
Their usefulness for predicting type 2 diabetes has been lim-
ited and is no better than classic risk factors such as age, BMI, 
and blood glucose.24 However, the addition of detailed genetic 
testing to a precision medicine approach might improve the 
specificity to identify subgroups of patients with diabetes who 
can then be assessed for differential responses to medications 
in terms of safety and efficacy.31

Currently for diabetes, genetic markers are in most cases 
not sufficiently informative to assign precise therapy—
excluding cases of MODY or neonatal diabetes, which are 
both characterized by genetic mutations. Attempts are now 
being made by various professional societies to create diabe-
tes guidelines for helping therapy decisions to allow indi-
vidualized diabetes therapy. These decisions are currently 
based mainly on the status of the patient and positive or neg-
ative side effects of different medications that are available.

The Need for Better Precision Medicine for 
Therapeutic Decisions (ADA Rx Guidelines)

A goal of diabetes precision medicine database generation pro-
grams is to develop a new classification of diabetes that will 
simplify treatment regimens in terms of a best combination of 
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likely efficacy and unlikely side effects. Precision medicine 
will combine (1) individual data about genetic predispositions 
to diseases; (2) biomarker information about disease risks and 
responses; (3) environmental data; and (4) behavioral data 
derived from databases and sensors measuring glucose, lactate, 
cardiac electrophysiology, food ingestion, exercise, tempera-
ture, sweat rate, and global positioning.1 These data will be 
used to create multifactorial risk scores and risk patterns as well 
as to accurately predict responses.32

Currently, a clinician confronted with making a decision 
about prescribing a medication for type 2 diabetes is faced 
with many choices that all appear to be equally likely to pro-
vide benefit and there is little specific information available 
as to whether this specific patient is more or less likely than 
average to benefit from any of the drugs or whether the thera-
peutic effect will be sustained. Choosing on the basis of 
avoiding side effects often consists of considering whether a 
patient already shows signs of a problem to avoid the drug if 
it is known to frequently cause an exacerbation of this prob-
lem. Little specific information may be available to predict 
whether this patient is more or less likely than average to 
develop this adverse effect from this or any other drug. 
Current guidelines from professional organizations, such as 
the American Diabetes Association (ADA)33 and the 
American Association of Clinical Endocrinologists34, do not 
include genetic and genomic information for drug therapy. 
This type of information, which is generally unavailable at 
present, could facilitate a precision medicine approach to 
diabetes. Stratifying patients with type 2 diabetes into sub-
groups expected to have unique pharmacologic responses 

would simplify the selection of the best drug treatments for 
type 2 diabetes. Future precision medicine flowcharts from 
professional organizations for everyday clinical diabetes 
care will likely link genetic, genomic, environmental, and 
behavioral information with treatment recommendations in 
three or more dimensions. It is expected that as genetic data-
bases become established, then genotype and genomic infor-
mation will become increasingly used to discover new drug 
targets and predict responses to drug treatments. Since type 2 
diabetes appears to be a multifactorial disease where predis-
position is also influenced by nongenetic or environmental 
factors, there is probably a limit to the precision that genetics 
alone can provide,24 but it would be useful to better under-
stand the interactions between various nongenetic environ-
mental and behavioral factors with various genetic 
physiologic factors. Machine learning might eventually play 
a role in analyzing these interactions.35

Major Precision Medicine Initiatives

A variety of precision diabetes initiatives have been launched 
since 2005 in the United States, Europe, Asia, and Australia.24 
They have been generally funded through public-private 
consortia. The largest of these is the Nordic Precision 
Medicine Initiative, which was formed in 2015 and is 
intended to assemble genetic and other biomedical data from 
over one million Nordic citizens in their biobanks.36 The 
ADA has established a Precision Medicine in Diabetes 
Initiative that will, over the next five years, formulate a con-
sensus statement on precision diabetes medicine and will 

Figure 1. The sum of the interactions between nongenetic environmental and behavioral factors (the exposome) with genetic and 
quantifiable elements of human physiology (the physiome) comprising an individual’s observable characteristics, which are known as the 
phenome. Reproduced with permission from Diabetes Care.28
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launch complementary activities. The program’s six objec-
tives are listed in Table 3.

Conclusion

There is a need for precision medicine to be applied to diabe-
tes in order to inform therapy decisions. Precision medicine 
can potentially utilize a vast amount of omic and other data 
to guide disease management and improve clinical outcomes. 
This paradigm, which is increasingly being successfully 
applied by oncologists, where the diseases have different 
genetic underpinnings than diabetes, has the potential to 
allow the selection of diabetes treatments that are tailor-
made for each patient with diabetes. The hope is that preci-
sion medicine can use this information to improve the 
wellbeing of those with diabetes.
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